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Static Bifurcations in Electric Power Networks: 
Loss of Steady-State Stability, 

and Voltage Collapse 
HARRY G. KWATNY, SENIOR MEMBER, IEEE, ARUN K. PASRIJA, MEMBER, IEEE, AND LEON Y. BAHAR 

Ahsrracr -This paper presents an analysis of static stability in electric 
power systems. The study is based on a model consisting of the classical 
swing equation characterization for generators and constant admittance, 
PV bus and/or PQ bus load representations which, in general, leads to a 
semi-explicit (or constrained) system of differential equations. A precise 
definition of static stability is given and basic concepts of static bifurcation 
theory are used to show that this definition does include conventional 
notions of steady-state stability and voltage collapse, but it provides a basis 
for rigorous analysis. Static bifurcations of the load flow equations are 
analyzed using the Liapunov-Schmidt reduction and Taylor series expan- 
sion of the resulting reduced bifurcation equation. These procedures have 
been implemented using symbolic computation (in MASYMA). It is shown 
that static bifurcations of the load flow equations are associated with either 
divergence-type instability or loss of causality. Causality issues are found 
to be an important factor in understanding voltage collapse and play a 
central role in organizing global power system dynamics when loads other 
than constant admittance are present. 

I. INTRODUCTION 

P ROBLEMS associated with the steady-state stability 
and voltage collapse of electric power systems have 

become increasingly important during the past decade and 
have consequently received the attention of many investi- 
gators. To a large extent, this is due to the fact that the 
present-day power system operating environment substan- 
tially increases the difficulty of maintaining acceptable 
system voltage profiles. Low voltage can result in loss of 
stability and voltage collapse and ultimately to cascading 
power outages. Indeed, voltage difficulties have been asso- 
ciated with major incidents in Italy, France, Britain, Japan, 
and the U.S. (see [l]-[9] for a sample of the literature). 
Several factors have contributed to this situation, including 
the adoption of higher transmission voltages, ‘the relative 
decrease, in the reactive power output of large generating 
units, and the shift in power flow patterns associated with 
changing fuel costs and generation availability. 

The severity and extended time duration of recent major 
system disturbances are responsible for the current interest 
in comprehensive system restoration plans (Kafka et al. 
[lo], Blankenship and Trygar [ll]). Here again, steady-state 
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stability and voltage collapse are vital issues in the recon- 
struction of a power system in minimum time following a 
major system failure. Such incidents, although very rare, 
are of serious concern to the electric utility industry, which 
is actively pursuing the development of computer-aided 
procedures for minimizing the effect of such eventualities. 

In response to these concerns, there continues to be a 
substantial international effort to develop on-line voltage 
control algorithms based on some form of optimal (active 
and reactive) power flow formulation (Hano, et al. [12], 
Aldrich et al. [13], Burchet et al. [14]). This is a very 
difficult problem and even the structure of an appropriate 
performance index is not obvious (the discussions in 
Savulesco [15] and Capasso et al. [16] are interesting in this 
regard). In fact, it is likely that a multiple objective formu- 
lation will prove necessary. The experience in France and 
Italy suggests that a practical control algorithm will iden- 
tify critical buses and maintain tight control of voltage on 
those buses. But how does one identify the critical buses? 
In our view, this and other basic questions require answers 
if comprehensive, on-line voltage control is to become a 
reality. 

It is common to associate steady-state stability with the 
ability of the transmission network to transport real power 
(for example, see the discussion of transmission capacity in 
[32]) and to associate voltage collapse with the inability to 
provide reactive power at the necessary locations within 
the network as described by Laths [4], [34]. As meaningful 
as these interpretations may be in appropriate cir- 
cumstances, a clear understanding of steady-state stability 
and voltage collapse can only be achieved by considering 
them both as arising from a common, well-defined origin. 
The main purpose of this paper is to establish the frame- 
work for such a point of view. Indeed, there do not now 
exist precise definitions of steady-state stability or voltage 
collapse which are generally accepted or useful. Existing 
characterizations of these processes remain primarily in 
terms of relatively simple paradigms. One consequence of 
this situation is the continuing discussion on whether 
voltage collapse is a static or dynamic phenomenon 
(Tamura et al.. [26]). 

Perhaps the most widely held notion of steady-state 
stability requires the existence of an equilibrium point, i.e., 
a solution to the load flow equations, which is stable in the 
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sense of Liapunov. Several investigators have considered 
extentions to the primitive concept of steady-state stability 
in this spirit, including Venikov et al. [23] and Galiana and 
Lee [24]. It is expected that such a generalized definition 
could also embrace voltage collapse phenomena. However, 
voltage sensitivities to various system parameters are typi- 
cally suggested as “indicators” of voltage collapse, if not 
as a basis for its definition (e.g., Abe et al. [25] and 
Galiana [35]), but sensitivity considerations do not follow 
from existing generalized definitions of steady-state stabil- 
ity. In this paper, we propose a definition of static stability 
of electric power systems which does encompass conven- 
tional notions of both steady-state stability and voltage 
collapse. 

Electric power systems operate under the influence of 
numerous parameters which vary with time and cir- 
cumstances. As these parameters change, it is generally 
accepted (see Venikov et al. [23]) that the power system 
can lose stability in one of two ways; either with the 
abrupt appearance of self-sustained oscillations or with the 
disappearance of the equilibrium point. The latter is re- 
ferred to as divergence or as a static bifurcation. In this 
paper, we study static bifurcations of electric power sys- 
tems. Our analysis is based on the theory of generic 
bifurcations which is readily accessible in the recent books 
by Chow and Hale [17], Vanderbauhede [18], Arnold [19], 
Guckenheimer and Holmes [20], and Golubitsky and 
Schaeffer [21]. This theory allows development of a classi- 
fication of the mechanisms by which an electric power 
system can be expected to lose static stability. 

There is ample evidence relating steady-state stability 
and voltage collapse with the possible existence of neigh- 
boring multiple equilibria (see, for example, Tavora and 
Smith [22], Venikov et al. [23], Galiana and Lee [24], Abe 
et al. [25], and Tamura et al. [26]). Thus, static bifurcation 
theory appears to be an appropriate mathematical frame- 
work for investigating these issues. The earliest application 
of bifurcation theory to power system analysis of which we 
are aware is the interesting study of a conservative, three- 
machine study reported by Andronov and Neimark in 
1961. Their paper is summarized by Aronovich and 
Kartvelishvili in the English translation [31]. A bifurcation 
analysis of the real (active) power flow equation was 
initiated by Aroposthatis, Sastry, and Varaiya [27]. In this 
paper, we deal with a much larger class of nonconservative 
models which includes transfer conductances as well as 
voltage variations and reactive power effects. The latter is 
essential to a discussion of voltage collapse. In [33], Sallam 
and Dineley give an interpretation of the steady-state 
stability of a single-machine, infinite-bus system in terms 
of catastrophe theory. 

In the following analysis, we consider the standard 
swing equation model used in power system transient 
stability analysis with transfer conductances and including 
PV buses (voltage-controlled type), and PQ buses (con- 
stant power type). In Section II, the model is described in 
detail. The model is comprised of a coupled system of 
differential and algebraic equations (sometimes called a 
semi-implicit or constrained [36] system of differential 

equations), a point which is central to our analysis. The 
fact that such semi-implicit systems arise in power system 
analysis was pointed out by Korsak [37]. We also intro- 
duce in Section II the concept of a “regular” equilibrium 
point and identify an issue of causality in power systems 
which proves to be an essential aspect of static stability. 

Section III consists of a summary of the relevent con- 
cepts and results of static bifurcation theory and Section 
IV summarizes the Liapunov-Schmidt analysis as we have 
implemented it. In Section V, we define an equilibrium 
point to be statically stable if it is regular and stable in the 
sense of Liapunov. It is shown that nonregular equilibria 
are either static bifurcation points of the load flow equa- 
tions or are equilibria at which the power system model is 
not locally causal. We show how existing indicators of 
steady-state stability and voltage collapse follow from our 
definition and the most basic results of bifurcation theory. 
An example is given which illustrates all concepts intro- 
duced and several different mechanisms of static instabil- 
ity. 

The main conclusion is that both steady-state stability 
and voltage collapse can be viewed in terms of a common 
mathematical structure which predicts a much richer set of 
mechanisms of power system static instability than previ- 
ously recognized. The painful algebraic calculations re- 
quired-even in our very modest examples-to carry out 
the essential Liapunov-Schmidt reduction and subsequent 
series expansions are facilitated by the use of the 
MACSYMA symbolic computation program. Our study 
indicates that static bifurcation theory combined with sym- 
bolic ‘computation can be developed into a practical ad- 
junct to load flow analysis for the detailed investigation of 
situations in which loss of steady-state stability or voltage 
collapse is a concern. 

II. THE POWERSYSTEMMODEL ANDLOCAL 
STABILITY PROPERTIES 

We consider a system with n + m buses in which buses 
j =I,. . .) n are the internal buses of n generators, buses 
i=n+l;** , n + m are m voltage-controlled (PV) load 
busesandbusesi=n+m+l;.-,n+m+IareIPQload 
buses. As is usual, we consider this network to be the 
equivalent reduced network resulting from elimination of 
the constant admittance loads and internal buses. A com- 
plete set ,of equations describing this system is 

MiS~+DiS(+fi=P,,, i=l,...,n 0) 

fi= ‘/i? i=n+l;--,n+m (2) 

fr=P/i> gi=Q,i, i=n+m+l,,.- ,n+m+l (3) 

where 
fi=C[E,~~B,jSin(6;-6i)+E,EjGijCOs(6i-si)], 

j 
i=l,. . ., n + m +I (4) 

gi=$[E,E,Gijsin(Gi-S,)-E,E,Bijcos(S,-6,)], 

i=n+m+l;.*,n+m+l (5) 
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and Mj denotes the rotor inertia, Di the damping con- 
stant, Ei the bus voltage, 6j the bus voltage angle, B;j(G;j) 
the transfer susceptance (conductance), Pmi the turbme 
mechanical power injection, P,, and Q,, the load real and 
reactive power components. 

Equations (1) and (2) can be placed in a convenient 
standard form by defining the vectors 

s= [sl,*~~,s”]’ (6) 

a,= [~“+1~*~*Jn+m+,l’ (7) 
E = [En+m+l>. . -9 E,+,+,lr (8) 

y = [S;, E’]’ 

and the functions 
(9) 

-Q /(n+Jn+l)? * * 9 gn+m+1 -Q ,(n+m+l)] ’ 01) 

f@> Y, A) = if:, f2y (14 

so that (1) and (2) can be written 
MS”+ Da’+ fi(S, y, A) = 0 (134 

f*@,YJ)=o. (13b) 
An equilibrium point of (13) is a point (6*, y *, A*) that 

satisfies the relation f(s*, y*, X*) = 0. We will call the 
system (locally) causal at (a*, r*,A*) if (13b) admits a 
solution ~(6, X*) in a neighborhood of (a*, y*) with 
y(6*, X*) = y*, and strongly causal at (S*, y*, A*) if it has 
a solution ~(6, X) in a neighborhood of (S*, y*, X*) with 
y(6*, A*) = y*. It is strictly causaf if it is strongly causal 
and the solution ~$6, A) is unique. These definitions are 
motivated by the fact that if (13b) does not admit a local 
solution for y, then the state trajectories of (13) must be 
interpreted as distributions since they contain singularity 
functions. Moreover, in this case, the machine angle trajec- 
tories S(t) are not uniquely determined by the initial 
“state” S(t,), S’( to). We will be primarily concerned with 
the properties of (13) in the neighborhood of equilibria.at 
which (13) is causal. If (13) is not causal, then the vahdtty 
of the model as a characterization of the power system is 
questionable. It is likely that parasitic effects, neglected in 
(13), now become central to the local power system behav- 
ior. 

An equilibrium point (S*, y *, A*) is regular if there are 
unique (modulo the translational symmetry) functions 
6,(X) and y,(A) satisfying f(s,, y,, X) = 0 in a neighbor- 
hood of (a*, y*, X*), such that 6*=6,(X*), y* = y,(X*), 
and (13) is strongly causal at (S*, y*, X*). The following 
theorem will be useful. 

Theorem I: If (S*, y*, A*) is a regular equilibrium point 
then D,,&(&*, y*, A*) has an inverse. 

Proof: Since the system is strongly causal at the equi- 
librium point, f2 = 0 has a solution y(S, h) in a neighbor- 
hood of (a*, y*, A*) with y(6*, X*) = y*. To demonstrate 
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that the inverse exists, we need only show that the solution 
is unique. Note that a solution exists iff 

rad{D8f2 Dyf2 Dxf2}*=ra~{Dyfd*. 
Thus, the maximum rank { Ds f2Dy f2 DA f2 }* = m occurs 
when { Dy f2}* has an inverse and the solution is unique. 
Now, at a regular equilibrium point, we must have 

t 

4fi D,f, &fi * 
rank Dsf2 Dyf2 Dhfi 1 =n+m-l 

which is its maximum rank and this can only occur if 
rank{D,f, Dyfi Dxfd*=m. 

Corollary I: The system (13) is strictly causal at a 
regular equilibrium point. 

If (13) is strictly causal at the equilibrium point 
(a*, y*, X*), the linearized dynamics of (13) reduce to the 
differential equation 

Mx”+ Dx’+ Kx=O (14) 
where 

K= (0,f,-0,f,(0,f~)-‘0,/,)* (19 
and x = 6 - 6*. The results of Kwatny, Bahar, and Pasrija 
[29] provide a complete characterization of the stability of 
regular equilibria. In general, M’ = M > 0, D’ = D 2 0. 
However, K is not typically symmetric. The essential 
stability properties of (14) are provided in [29]. We sum- 
marize some of the results of [29] in the following theorem. 

Theorem 2: The system (14) is stable for all D > 0 only 
if there’exists a real, symmetric, positive-definite symme- 
trizing matrix S such that SK = Q, where Q = Q’ has 
precisely one zero eigenvalue corresponding to the transla- 
tional symmetry and its remaining n - 1 eigenvalues are 
positive. 

Remark: This is a necessary but not sufficient condition 
for stability. If D is restricted so that M-lD and M-‘K 
commute (for example, uniform damping) then it is suffi- 
cient as well. 

If (13) is not strictly causal, then the linearized dynamics 
are of the singular implicit type (see Verghese et al. [38] 
and Bernhard [39]) and are not reducible to the form of 
(14). Local behavior can be analyzed using the methods of 
[38] and [39]; however, we will not consider this point here. 

Although our discussion will .center on (13) it will 
sometimes be convenient to interpret our results and com- 
pare them with those of others in terms of the physical 
variables. For this purpose, define the functions 

f,(s,s,,E,X)=[f,,...,f,l’-P, (16) 

f,(W,, E, A) = [fn+l,...,fn+m+,l’-PI (17) 

a(& 6, E, A) = k,+,+l,. - .> g,+m+,l’- Q,- (18) 

Equations (13) can now be expressed 

M6”+D6’+f,(S,6,,E,h)=O 094 

f,@, a,, E, A) = 0 (19’4 

g,@, a,, E, A) = 0. (194 
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The standard load flow equations are obtained from (19) singular, where 
by setting 8”. S’ equal to zero. Since these equilibrium 
equations have a translational symmetry in the angle vari- 
ables, it is commonplace to measure all angles relative to 

Kr = 
i 

Do,F,I - [ D+F,iD,F,l] 

an arbitrarily selected swing bus. Thus, we will specify bus 
number 1 as the swing bus (any other generator bus will 
do), and define the generator and load relative angle 
vectors Proof: At a strictly causal equilibrium point, there 

e=(6,,s*‘-6,;~~,6,-6,) (20a) exists a solution y = ~(6, A) of f2(8, y, h) = 0. Define the 

+= (~,+,-~,,...,~,+,+1-~,)’ (2Ob) 
function h(S, X) = f,(S, ~(8, h), h). It is easily verified 
that h(S, X) inherits the translational symmetry in S of 

and the functions f(l3, y, X). Define the function H(t9, h) = h(W3, X), where 

F,tb#dJ) = (fi-P,1,...,fn-P,,)fls,s,-e,~F2(e,~,E,X) (214 

= (f,+1- pl(“+l)‘. . .,fn+m+,- ~l(n+m+i))flS,G,4.~ @lb) 

F3(e,~,E,X)=(gr-Qr)ls,s,-e,9 tw 

F= [F,’ F; F;]’ (22) 

so that equilibria satisfy the load flow equation 
F(B, +, E, h) = 0. (234 

Translational symmetry implies that F( 0, +, E, h) is inde- 
pendent of el. Let 8, denote the reduced vector (&, . . . , 0,). 
By dropping the first equation of (23a), the load flow 
equations can be written in reduced form 

F,(e,., +, E, A) = 0. W) 
Remark: It is tacitly assumed that any solution of (23b) 

automatically satisfies the first equation of (23a) and is 
therefore a valid solution of (23a). When (23b) has multi- 
ple solutions, it is reasonable to ask whether all of them 
are legitimate solutions to (23a). We remark that it is 
always possible (ignoring physical limitations) to adjust 
the mechanical power input to generator number one so 
that the omitted equation is satisfied. In other words, the 
first equation of (23a), F’, has a distinguished parameter, 
namely Pml, which does not appear in any other equation, 
and it is possible to determine the function Pml( fl,., +, E, A) 
so that F’(LJ,, +, E, X, Pm,<&, q+ E, X)) = 0 when (23b) is 
satisfied. This, in turn implies that dF’ is a linear combi- 
nation of the rows of dF,. 

6 = @0 is the transformation defined in (20a). Note that 
De H * = D,h*@. Let S be the symmetrizing matrix for 
K = D,h*. We can write 

(WSQ)VD~H* = w’s~c (25) 

Thus, it is clear that V-‘DOH* is symmetrizable and, 
hence, has real eigenvalues. Moreover, according to Theo- 
rem 3, the signs of the roots of W’DOH* correspond to 
those of @‘SK@. But the roots of @SK@ are identical to 
those of SK, and Theorem 3 again implies that these roots 
have signs corresponding to the roots of K. Thus, we have 
shown that the eigenvalues of @-‘D,H * have signs corre- 
sponding to those of K. 

Now, let K have an eigenvector corresponding to a zero 
eigenvalue other than the translational symmetry; then 
there is a corresponding eigenvector ‘of (a-‘D,H * and, 
hence, of D,H*. It is convenient to denote this eigenvector 
by e = [ele:]‘. Translational symmetry corresponds to e, # 
0 and e, = 0. Since W’D,H* is symmetrizable, e is 
independent of the translational symmetry eigenvector so 
that e, must be nontrivial. Direct computation shows that 
De H *e = 0 implies Kp, = 0 and necessity is proved. 

It is convenient to use (23b) to study the dependence of 
the equilibria on the parameters X; however, (14) remains 
the basis for determining the stability of an equilibrium 
point. A straightforward calculation provides the following 
result which connects the stability characteristics of (14) to 
the function F,(B,, $I, E, X). First we recall from [29] the 
following theorem. 

Theorem 3: If a real matrix A is symmetrizable by a 
matrix S, as in Theorem 2, so that SA = Q, then A has 
independent eigenvectors, real characteristic roots, and 
these roots have the same sign as Q. 
Now, we are in a position to state the following theorem. 
Theorem 4: At a strictly causal equilibrium point, a 

symmetrizable matrix K of (15) has one zero eigenvalue 
corresponding to the translational symmetry. It has ad- 
ditional zero eigenvalues if and only if the matrix K, is 

For sufficiency, assume that there exists a nontrivial e, 
so that K,e, = 0. Not that DBH* = [O] D,,H*] and Do,!* 
= [b’] K:]‘. Furthermore, in view of the remark followmg 
(23b), the row b is a linear combination of the rows of K,. 
Thus, De H* e, = 0 and D,H* has a zero eigenvalue 
corresponding to nontrivial e,. It follows from the argu- 
ments above that K has a zero eigenvalue which does not 
correspond to translational symmetry. 

Remark: The significance of this theorem is that it 
provides a necessary and sufficient condition for incipient 
divergence instability. 

III. STATIC BIFURCATION 

The power system equilibrium equations typically de- 
pend on a very large number of parameters. Moreover, the 
number of parameters differs from system to system and 
from time to time. The essential problem of the analysis of 
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power system static stability is to recognize impending 
change in system behavior as these parameters vary and to 
identify the controlling parameters. Bifurcation theory pro- 
vides the tools to deal with such issues. A summary of the 
necessary ideas follows. 

Let X, 2 be Banach spaces, &? c X, an open set, and let 
C’(s2,Z) denote the Banach space of r-times continuously 
differentiable functions f: Q + 2 satisfying 

lfl.=sup{If(x)l+IDf(x)l+... +ID'f(x)l:x-2) 
<CO. 

Let r > 1 and let r c C’(0, Z) be a given family in 
C’(0, Z). Suppose there exists x0 E !J and f,, E 7 such that 

Note that if the derivative A = D,F(x,, A,) has a 
bounded inverse, then the implicit function theorem 
guarantees a unique zero in a neighborhood of x0 for each 
X in a neighborhood of A,. It follows that (x,, X,) cannot 
be a bifurcation point. Thus, we assume that A does not 
have a bounded inverse. Let Ker( A) denote the null space 
of A and Im(A) its range and further assume that 
dim[Ker( A)] = p = codim[Im( A)]. Then, using the method 
of Liapunov-Schmidt (to be described in some detail be- 
low), the study of the zeros of F(x, X) can be reduced to 
the study of the zeros of the so-called bifurcation equation, 
which represents p equations in p unknowns. Indeed, the 
bifurcation equation can be written 

fob) = 0. 
Then, ( fo, x0) is a bifurcation point with respect to +r if in 
each neighborhood U of ( fo, x,,) in C’(Q, Z) x X there 
exists (f, x1) and (f, x2) with f E r, x1 # x2 and f (x1) = 0, 
f(x*) = 0. 

c#+,X)=O +:RPxV-+RP, VCA. 

Thus, ( fo, x0) is a bifurcation point relative to a family r 
if an arbitrarily small perturbation of f. E 7, also belong- 
ing to the family r, has multiple zeros near x,,. The central 
problem of bifurcation theory is to characterize the zeros 
of f E r in a given neighborhood U of ( fo, x0) in Cr(Q, Z) 
X X. It is useful to distinguish two problems (Hale [1978]). 

Generic bifurcation problem -Given a neighborhood U 
of ( fo, x,,) in C’(Q, Z) X X, characterize the number of 
zeros of (f, x) in U. 

Now, for suitably smooth functions, the theory of uni- 
versal unfoldings deals with the question of determining, 
by appropriate transformations in the space of mappings 
and the u-space, a function +*(u*, y(X)) such that the 
zeros of +* coincide with those of +, the parameter y is of 
finite dimension with some minimum dimension q, and +* 
is a polynomial of some degree in u*. Thus, the characteri- 
zation of the zeros of the function F(x, A) is reduced to 
the study of the much simpler problem 

Restricted bifurcation problem -Given a neighborhood U 
of ( fo, x,,) in C’(!J, Z) X X and a family r c Cr(Q, Z), 
characterize the number of zeros of f E 7, and (f, x) in U. 

+*(u*,y) =6 c$*: RPx Rq+ RP. 

The function +* is the universal unfolding of the func- 

The importance of this distinction rests with the fact 
that these problems represent two points of view which 
lead naturally to substantially different methods of attack. 
In order to make this point clear, we briefly review the 
approach to each problem. We note that, in a particular 
application, one or the other of these viewpoints may be 
preferred. 

Before proceeding, it is convenient to recast the above 
formulation of the bifurcation problem into an equivalent 
but perhaps more conventional formalism. Let A = 
Cr(w, Z) and define 

tion $J at the bifurcation point end and it allows a com- 
plete characterization of the zeros of F(x, h) for h in a 
neighborhood of X,. The dimension of the y-space is a 
measure of the degeneracy of the bifurcation. It follows 
from analysis of the polynomial function +* that there 
exists a neighborhood W of y0 = y( A 0) in y-space, which is 
divided into finitely many open regions by surfaces of 
co-dimension 1 such that throughout each region +*( u*, y) 
has the same number of zeros. The surfaces across which 
the number of zeros change are called bifurcation surfaces. 
These bifurcation surfaces can intersect, thereby defining 
(bifurcation) surfaces of higher codimension. The point y0 
lies at an intersection of codimension q in y-space. 

P(x,f) =f(xh for all x E Q and f E Cr(tJ, Z). 
Clearly, there is a I? c A such that the family r can be 
defined by the relation 

T= {F(x,X): xE&hEI’}. 

By associating h, with fo, the point (x0, X,) is a bifurca- 
tion point and the bifurcation problem is to characterize 
the solution set of 

F(x, A) = 0 

in a given neighborhood of (x,, A,) in Q x A (the generic 
problem) or in fl X I (the restricted problem). It is usual to 
refer to X as the parameter and to A, as a bifurcation value 
of the parameter. In our applications, we will always take 
52 and I to be open subsets of R” and Rk, respectively, 
and Z will be R”. 

The concept of universal unfolding seems to have 
originated with Thorn and has been agressively developed 
by many other investigators. In the case that + is derivable 
from a potential function (reducing the problem to that of 
catastrophe theory), the theory is extensive and the univer- 
sal unfoldings have been classified. The case p = 1 always 
fits into this category. Some results are also available for 
the general bifurcation problem (that is, + is not the 
gradient of a potential function) when p = 2. As pointed 
out by Hale [30], even when p is small the degeneracy of 
the bifurcation, when viewed as a generic bifurcation, can 
be inconveniently large. Thus, when p > 1, it is probably 
advantageous to assume the point of view of the restricted 
bifurcation problem. 

We introduce the restricted bifurcation problem with a 
qualitative description of bifurcation in the original 
parameter space A (see Arnold [19] for a more complete 
discussion). There exists a neighborhood V of A, in A 

, 
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which is divided into open regions by codimension 1 
surfaces. Throughout each region, F(x, A) has the same 
number of zeros. Since X, corresponds to a bifurcation 
point, it lies on one of the codimension 1 manifolds which 
form the boundaries of the open sets containing the generic 
points. These manifolds of singular points may -intersect 
forming manifolds of codimension 2 or greater in V. If X, 
lies on an intersection of codimension q, then the bifurca- 
tion is said to be a degeneracy of codimension q. 

Suppose now that we consider a k-parameter family of 
functions 7. That is, I’ is a k-dimensional manifold in A. 
The family r contains a bifurcation with degeneracy of 
codimension q if I intersects a manifold of singular 
points of codimension q. If the k-dimensional manifold I? 
intersects a manifold of codimension q > k, then the in- 
tersection can be removed by an arbitrarily small deforma- 
tion of the family 7. Thus, only bifurcations with degener- 
acy of k or less are generic in k-parameter families. We 
call a k-parameter family a generic family if it contains 
only bifurcations with degeneracy k or less -or, more 
precisely, all bifurcations correspond to transversal in- 
tersections of I with bifurcation surfaces of codimension 
k or less. The following theorem is a useful characteriza- 
tion of generic families (Arnold [19]). 

Theorem 5: For a one parameter generic family, the set 
of solutions of F(x, X) = 0 is a smooth manifold in C2 x I. 

Thus, at all points on the solution manifold of a generic 
family, we have 

rank[D,F]D,F] = n. 

There are other generic properties of restricted bifurcation 
problems (for example, see Arnold [19], Golubitsky and 
Schaeffer [21]). 

Theorem 6: For one parameter geheric families, all bi- 
furcation values are isolated and each bifurcation value 
corresponds to exactly one bifurcation point with nonzero 
second differential. 

IV. THE LIAPUNOV-SCHMIDT REDUCTION 

The essentials of the method of Liapunov-Schmidt for 
the analysis of bifurcation problems will be briefly re- 
viewed. Further details and examples may be found in [17] 
and [21]. We consider a smooth map F: St x V + Z, and 
for convenience we assume (0,O) E a X V and is a bifurca- 
tion point. Define A = D,F(O,O) so that 

F(x,A)=Ax+N(x,X) (26) 
where 

N(O,O) = 0 D,N(O,O) = 0. (27) 
Thus, we wish to study the solution set of the equation 

Ax+N(x,X)=O (28) 
in a neighborhood of (0,O). Let P: X + X, and Q: Z -+ Z 
denote projection operators and let X, and Z, denote 
Im( P) and Im(Q), respectively. The following theorem is 
the key to the reduction method. 

Theorem 7: If 
Ker(A) = X, and Im(A) = Z, 

then there exists a bounded linear operator K: Zp + XIpp, 
called the right inverse of A, such that AK = I on Z, and 
ZCA = I - P on X and (28) is equivalent to 

v-KQN(u+v,A)=O (29a) 
(i-Q)N(u+v;X)=O (29’4 

wherex=(u+v, u=PEX, and v=(I-P)EX~-~. 
Applying the Implicit Function Theorem to (29a), there 

is a (smooth) unique function v*( u, A) on a neighborhood 
of (0,O). Thus, on a neighborhood of (O,O), equation (28) is 
equivalent to 

(I-Q)N(u+v*(u,X),X)=O. (30) 
Equation (30) is referred to as the (reduced) bifurcation 
equation. Note that the number of independent equations 
represented by (30) is dim[ u] = dim [Ker( A)]. 

A complete analysis can be given for the case 
dim[Ker(A)] =l=codim[Im(A)]. (31) 

Our objective is to characterize the number of zeros in a 
neighborhood of the bifurcation point. The essential re- 
sults are summarized below. Let uO,wO be nontrivial vec- 
tors with u0 E Ker(A) and w0 E (I- Q)Z (recall that 
dim[( Z - Q)Z] = codim[ (A)]). Then, we can write u = au, 
and obtain the function ~*(a, X) = v*(uuO, X). Now, the 
pair (x, A) satisfies (28) in a neighborhood of (0,O) if 
x = au, + v, v = ~*(a, h) and the pair (a, X) satisfies the 
bifurcation equation 

+44x) =o (32) 
where the function $(a, X) is defined by 

~(a,A)w,=(I-Q)F(~u,+v*(a,h),A). (33) 

It is easily verified that 

+(O,O) = 0 and D&(0,0) = 0. (34 

Suppose, further, that the first nonvanishing derivative is 
the k th. That is 

D&(0,0) = 0, i=O;*.,k-1 (354 

D$$(O,O) # 0. Wb) 

As is well known from singularity theory, under certain 
genericity conditions to be discussed below, (32) is locally 
equivalent to its universal unfolding 

c$*(z,y)=y,+ylz‘+,**~,+yk-2Zk-2+Zk (36) 

where z = z(a, X) and yi = y,(X) are smooth, near identity 
transformations. In actual computation, the transforma- 
tions can be readily determined using the Taylor expansion 
of $44 A). 

Equation (36) can be used to characterize the number of 
zeros near the bifurcation point. The basic idea is to 
classify the number of zeros of C#B* in the y-space, that is, 
in terms of the k -l-dimensional parameter vector y = 
(Yo, Y*,’ . .7 yk- *)I. The number of solutions change when 
the parameter value crosses a singular (bifurcation) surface 
of multiple solutions. Multiple solutions occur when the 
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following hold: 

+*(w) = 0 (37) 
m*(z, Y) = 0. (38) 

In principle, the codimension 1 bifurcation surfaces can 
be found by eliminating z between (37) and (38) thereby 
obtaining an algebraic relation involving only the parame- 
ters. As will be seen, it is easier to derive a parametric 
representation of the bifurcation surfaces. 

Specific results for k = 2, 3, 4 will be summarized. 
Further details may be found in Chow and Hale [17]. 

k=2 +*(v) =Yo+z2 (39) 
from which it is concluded that y0 = 0 defines the bifurca- 
tion surface, a point in the l-dimensional y-space, and 

(i) y0 > 0 implies no solution of (37) 
(ii) y0 = 0 implies one solution of (37) 
(iii) y0 < 0 implies two solutions of (37). 

k=3 +*(z, Y) = YfJ + Y,Z + z3 

from which 
(40) 

and (37) and (38) yield the parametric characterization of 
the bifurcation surfaces 

y. = -322 

y1 = 2z3. 

These relations constitute a parametric representation of a 
cusp in the y-plane. 

k=4 $l*(z, y) = y. + ylz + y2z2 + z4. (41) 
The bifurcation surfaces are defined by the simultaneous 
solution of the equations 

y. + y,z + y2z2 + z4 = 0 

y,+2y2z+4z3=0 

which define surfaces in three-dimensional y-space called 
the swallow tail. 

A brief description of the required conditions follows. 
Let W be a neighborhood of the origin of Rk-‘. In the 
original parameter space A, the family +*(z, y) is rep- 
resented by a smooth (k - 1)-dimensional manifold r, 
containing the origin of A, and such that 

W= {~ER~-‘~~=~(X),XEI’}. (44 
It is easy to see that such a manifold exists in a neighbor- 
hood of the origin iff 

rank[D,y(O)] =k-1. @?I 
The manifold B in A defined by 

B= (AEAI~(A)=O} (44 

is the bifurcation surface corresponding to the set of 
bifurcation parameters of maximum degeneracy (k - 1). It 
is the intersection of bifurcation surfaces of lower degener- 
acy. Clearly, B is of codimension (k - 1) and I and B 
intersect at the origin. Moreover, it is easily shown that the 

intersection is transversal. Relation (43) is called a generic 
condition and is necessary for the bifurcation to be generic. 
Note that (43) requires that dim(X) >, k - 1. 

V. STATIC BIFURCATION IN POWER SYSTEMS 

We are now in a position to examine the following 
concept of static stability of electric power networks. An 
equilibrium point is statically stable if it is regular and 
stable in the sense of Liapunov. 

Note that, by definition, a bifurcation point of the load 
flow equations cannot be a regular equilibrium point. 
Therefore, a bifurcation point is not statically stable. By 
Corollary 1, a regular equilibrium point is strictly causal. 
Therefore, an equilibrium point which is not strictly causal 
is not regular and, hence, it is not statically stable. We will 
show, by an example, that bifurcation points may or may 
not be strictly causal and that equilibria which are not 
strictly causal need not be bifurcation points. Changes in 
the causal properties of equilibria under parameter vari- 
ations may be studied by analyzing bifurcations of the 
subset of the load flow equations (21b and c). We will not 
pursue such an analysis here. 

An equilibrium point of the electric power system 
(a,*, +*, E *, A*) satisfies the load flow equation (23b). It is 
a bifurcation point only if the Jacobian 

is singular at (&*, $*, E*, A*). Venikov et al. [23] re- 
cognized the significance of a degeneracy in J,. with respect 
to the steady-state stability of a power system. They ob- 
served that, under certain conditions, a change in the sign 
of deg { Jr} during a continuous variation of system 
parameters coincides with the movement of a real char- 
acteristic root of the linearized swing equations across the 
imaginary axis into the right half of the complex plane. 
Thus, they recommended tracking det { J,} during load 
flow calculations and proposed a modification of Newton’s 
method which allows precise determination of the parame- 
ter value where such a sign change occurs. Tamura et al. 
[24] discuss some computational experience using this 
method. 

In the terminology of this paper, the basis for their 
argument is easily established. Let 

Suppose that det { Jr} = 0 at X* and det { A} # 0 for all X 
in a neighborhood of X* (i.e., the equilibrium point is 
strictly causal). Using Schur’s formula, we have 

det{J,.} =det{K,}det{A} 

so that the change in sign of det { J,.} at X* coincides with 
a change in sign of det { K,}, which typically corresponds 
to a single real root of K, crossing the imaginary axis. 

A further elaboration of the significance of a degeneracy 
in Jr has been given by Abe et al. [25]. To summarize their 
arguments, first note that (23b) yields the following funda- 
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De,Frd9 + D+F,d+ + D,F,dE + D,F,dh = 0. (46) 

Now, partition J, and D,F, according to the following 
definitions: 

] A2=[;;$j 
L 

De,& D&l 
A,= DF 

e, r2 D+Fr2 

A3 = [De,& D&3] A4 = [D&31 The system equations are 

B, = D&,. M,S; + (V,V/X) sin (6, - S,) = P, 

mental relation: 

1 3 

T 
tB 2 

Fig. 1. Network schematic for example. 

(514 

If det { A4} # 0, then applicator of Schur’s formula leads 
M24’ + (V,V/X) sin (6, - 6,) = P2 @lb) 

to (V,V/X)sin(G, - S,)+(V,V/X) 

det{J,.} =det{A4}det{A,-A2A~1A3}. (47) 
esin(6, -6,) = P3 (51~) 

-(vov/x)cos(s3-8,)-(v0v/x)c0s(G3-6,) 

Also, in this case, we obtain from (46) the relation 

[A,-A2A,‘A3][dfI,! d~‘]‘=-[B,-A2A,1B2]dX. 

(48) 

From (47), it is clear that (0:, $*, E *, X*) is a bifurcation 
point only if det { A, - A,A; ‘A3}* = 0. Equation (48) 
shows that this condition implies that the angle variables 
are “infinitely sensitive” to small changes in the parame- 
ters. This property is generally associated with the phe- 
nomenon referred to as loss of steady-state stability. 

On the other hand, suppose det { A,} z 0, so that appli- 
cation of Schur’s formula provides 

det{J,} =det{A,}det{A,-A,A;fi,} (49) 

and (46) yields 

[A, - A3A;?4,] dE = - [B, - A3Ac1B1] dX. (50) 

Thus, a bifurcation occurs only when det {A, - 
A3AI-1A2}* = 0, and, in this case, the bifurcation is associ- 
ated with infinite sensitivity of the load voltage magni- 
tudes with respect to parameter perturbations. This prop- 
erty is the essential feature of so-called voltage collapse. In 
fact, it is sometimes used as the definition of voltage 
collapse. 

The Jacobian Jr can of course be singular without either 
A, or A, being nonsingular or with both A, and A, 
nonsingular. Thus, not all bifurcations can be given one of 
the two more or less conventional interpretations described 
above. However, Abe et al. [25] point out that it is com- 
mon practice to operate power systems in such a way that 
the phase angle difference across each transmission lines is 
less than 7r/2 and in this case det { A,} # 0. 

Example: The following example, adapted from 
Johnson [28], illustrates several of the concepts developed 
above in a simple physical context. Fig. 1 shows the 
three-bus network to be considered. 

+(2/X- B)V2 = Q3. (51d) 

The translational symmetry which exists for all values of 
the parameters implies that solutions exist only if P, + P2 
+ P3 = 0. We assume that this is the case. For conve- 
nience, we fix some of the parameters: V, =l, X=1, M, = 
1, M2 = 1. Consistent with our earlier notation, let B = 6, 
- a,, + = 63 - S,, and define AP = P2 - P,. The reduced 
equations are 

8”=-Vsin(B-cp)-Vsin++AP 

O=V(sin++sin(+-8))-P, 

(524 

(52b) 

Three cases, illustrating three static instability situations, 
will be discussed. 
Case 1: Loss of steady-state stability 

parametervalues: AP=@,P,=O,B=2-a,Q,=O 

equilibrium point: 0 * = VT/~, q? = n/4, V * = 1. 
Case 2: Voltage collapse 

parameter values: AP = 0, P3 = - 1, B = 0, Q3 = 0 

equilibrium point: 8 * = 0, $* = - r/4, V * = l/e. 
Case 3: Loss of causality 

parametervalues: AP=l,P,=l,B=l,Q,=O 
equilibrium point: B * = VT/~, +* = VT/~, V * = 1. 

Cases 1 and 2 are simple (fold) bifurcations with one- 
dimensional null space and with k = 2 (see (39)). The 
functions ye(A) and the null space spanning vectors u. are 
given by 

Case 1: 

yo=-fi(B-2+fi)+fi(AP-fi)+,/j-Q, 

-(B-2+fi)2/8 

u. = (1,1/2, -l/2)’ 
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Case 2: 

yo=- B/4-AP/2+(P3+1)/2-Q,/2-B2/16 

u. = (0, -fi,l)‘. 

We call Case 1 loss of steady-state stability because it 
clearly represents a case of maximum real power transfer 
from bus 2 to bus 1 with a phase-angle difference of r/2. 
Straightforward calculation will verify that this equi- 
librium point is a bifurcation point and that it is strictly 
causal. Moreover, both A, and A, are nonsingular. 

Case 2 is essentially the situation used by Glavitsch [40] 
to illustrate voltage collapse. It is a bifurcation point and it 
is not strictly causal. We will comment further on this case 
below. 

Case 3 illustrates loss of causality. It does not represent 
a bifurcation of the complete set of load flow equations. 
Indeed, det { Jr} f 0. It does represent a bifurcation of 
(52b and c) with B treated as a parameter. Analyzing the 
bifurcation from this point of view, it is again found to be 
a fold bifurcation with 
yo= -(B-1)/2+(P,-1)/2+Q,/2-e/4 

and 
uo= (1, -1)‘. 

The causality issue is not only interesting but it is 
essential to an understanding of the global dynamics of 
power systems with loads. We will carry the analysis of 
this example a little further. The algebraic equations (52b 
and c) must be satisfied for all admissible trajectories. 
They define a one-dimensional manifold of possible values 
in the three-dimensional space of variables (8, (p, V). This 
manifold is called the configuration manifold. The state 
space consists of the points of the configuration manifold 
along with the one-dimensional tangent space associated 
with each point, i.e., the tangent bundle. Equation (52a) 
induces a vector field on the state space which is well 
defined at almost all points. The exceptional points are 
associated with points on the configuration manifold at 
which the matrix A becomes singular. 

We will develop our example further to illustrate these 
points. It is convenient to change coordinates from (8, +, V) 
to (a, B, V) where 

a = (2+ - e)/2, p=e/2 (53) 

tdrs &eouilibri~ are : . . ..j.... : :....:....I8 : 

q noncausal : 
"':" 

: 0 blrurcatlOn i 
,: ,,,. : .: . . . . . . 

: 

ration manifold and equilibria Fig. 2. Fig. 2. Configul Configuration manifold and equilibria. 

show” Wltih Ps=-I, 03 
,,,,AP varied rrom 010 - 

: : 

0. unstable : 

Now, V can be eliminated from (55b) to yield a relation 
between (Y and B. The resulting configuration manifold is 
composed of an infinite number of disconnected and 
bounded components for almost all values of the parame- 
ters. Fig. 2 illustrates the principal component for P3 = - 1, 
Q3 = 0, and B = 1. Equilibria are defined by setting the 
right-hand side of (55a) equal to zero. We consider the 
equilibrium point structure for various values of AP. 

a) AP = 0. Two equilibrium points exists on the prin- 
cipal component of the configuration manifold ((Y, B, V) = 
(- 1.222,0, .5333) and (- .2618,0,1.932). It is easy to con- 
firm that both equilibria are stable. As AP is decreased, 
the two equilibria move down along the manifold and 
remain stable until 

b) AP = - 1. The two equilibria are now located at 
((Y, B, V) = (-.7854, - .7854,1) and (-.2875, -.2877, 
1.839). The lower voltage equilibrium is noncausal and the 
higher voltage equilibrium is stable. Further decreases in 
the value of AP results in both equilibria in the lower right 
quadrant of the configuration manifold; in this case, the 
lower voltage equilibrium is unstable and the higher is 
stable, until 

c) AP = - 1.555. One equilibrium point exists and it is 
located at ((Y, B, V) = (- .4233, - .6109,1.487). This equi- 
librium point is easily confirmed to be a bifurcation point 
and to be strictly causal. Any further decrease in AP 
results in the absence of any equilibrium points. 

Consider once again the situation of a) above with 
A P = 0. Now, suppose AP remains fixed and B is de- 
creased. It can be shown that the principal component of 
the configuration manifold shrinks in size (with equilibria 
remaining at the two points at which B = 0) and reduces to 
a point as B + 0. This is one view of the mechanism of 
voltage collapse associated with Case 2. 

and in reverse VI. CONCLUSIONS 

e = 2p, c#l=a+p. 
In terms of the new variables, (52) becomes 

B”= - VcosasinB + AP/2 
0 = 2VsinffcosB - P3 

(54) 

(554 
(55’4 

0=2Vcosacos~-(2-B)V2+Q3. (55c) 
The configuration manifold is defined by (55b and c). It 

is easy to solve for V in terms of (Y 

V= [(P,ctna+Q,)/(2- B)]“2. (56) 

In this paper, we have presented some results in the 
study of static stability of electric power systems as bifur- 
cation phenomena. This work is a natural extension of that 
of Araposthatis, Sastry, and Varaiya [27] and is based on 
an expanded model, allowing transfer conductances and 
load models other than constant admittance. These en- 
hancements are necessary to characterize power system 
voltage instabilities and allow us to give a precise defini- 
tion of power system static stability. It has been shown 
that static bifurcation theory is a suitable framework for 
the definition, classification, and analysis of voltage col- 
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lapse phenomena. Moreover, our experience strongly sug- 
gests that symbolic computation can make this theory a 
valuable practical tool. 

The concept of regularity of an equilibrium point has 
been introduced and is an essential part of the definition 
of static stability. It has been shown that nonregular 
equilibria include bifurcation points of the reduced load 
flow equations and equilibria which are not strictly causal. 
We have shown how sensitivity factors often used to 
characterize voltage instabilities arise naturally from the 
basic concepts of bifurcation theory. A complete classifica- 
tion of static bifurcations associated with a null space of 
co-dimension one is available and is suitable for the analy- 
sis of power system static bifurcations generically char- 
acterized by a relatively small number of parameters (say, 
less than about six). It has been shown how the critical 
parameters can be identified using the Liapunov-Schmidt 
reduction followed by Taylor expansion of the reduced 
bifurcation equation. The ability to compute the functions 
y(h) is potentially of great importance. When these func- 
tions are known, the critical physical parameters associ- 
ated with a particular instability can be identified by 
sensitivity analysis, thus providing important information 
for system or control design. 

The issue of causality becomes important when load 
buses are present, in which case the system motion takes 
place on an imbedded manifold. Although the studies 
reported herein deal with local phenomena, they indicate 
that a complete understanding of global power system 
dynamics will require a modern differential-geometric per- 
spective which deals directly with motion on such a mani- 
fold. We have seen that some static instabilities may be 
associated with distortions of the configuration manifold 
under parameter variation which lead to loss of causality. 
This point of view raises many questions concerning even 
the most basic tools of power system analysis such as 
simulation techniques and direct methods of stability anal- 
ysis. 

Our analysis, based on static bifurcation of constrained 
differential equations, leads to loss of static stability by 
two mechanisms: divergence instability, or loss of causal- 
ity. Other mechanisms related to local and global dynamic 
bifurcations are clearly possible and warrant further study. 
Furthermore, the model upon which our analysis is based 
can be extended in several ways which will undoubtedly 
reveal additional mechanisms of instability. The method of 
analysis described herein can be directly applied to static 
load characteristics other than constant power. The gener- 
ator models can be generalized. In particular, automatic 
voltage regulators have not been considered here and can 
play an important role in some circumstances. Similarly, 
the dynamics of local voltage control devices (e.g., tap 
changing transformers, capacitor banks) may be important 
in certain instances. 
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